metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

K. Prabhakara Rao and K. Vidyasagar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

Correspondence e-mail: kvsagar@iitm.ac.in

Key indicators

Single-crystal X-ray study T = 293 K Mean $\sigma(a-O) = 0.002$ Å R factor = 0.028 wR factor = 0.078 Data-to-parameter ratio = 10.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Sodium methylenediphosphonate, Na(HO₃PCH₂PO₃H₂)

The title compound, poly[sodium(I)- μ_6 -methylenediphosphonato], [Na(CH₅O₆P₂)]_n, has been synthesized, and characterized by single-crystal diffraction methods and spectroscopic studies. It has a three-dimensional structure in which the Na⁺ ions (site symmetry $\overline{1}$) are octahedrally coordinated by O atoms of the methylene diphosphonate moieties.

Comment

The solid-state chemistry of metal diphosphonates is an active area of research (Clearfield, 1998; Clearfield & Wang, 2002). Among the many alkyl diphosphonates known, there are only a few reports of compounds with a metal to diphosphonic acid ratio of 1:1. These include $\text{Ti}[O_3P(\text{CH}_2)_n\text{PO}_3]$ (n = 2 and 3; Serre & Ferey, 2001), $\text{LnH}[O_3P(\text{CH}_2)_n\text{PO}_3]$ (n = 1-3; Serpaggi & Ferey, 1998), $\text{Sb}[O_3P(\text{CH}_2)_n\text{PO}_3\text{H}]$ (n = 2 and 3; Adair *et al.*, 2000) and $\text{Sn}(\text{HO}_3\text{PCH}_2\text{PO}_3\text{H})$ (Zapf *et al.*, 1996). As part of our ongoing studies of organic–inorganic hybrid materials, we have synthesized several alkyl diphosphonates of alkali metals, including the title compound, (I) (Fig. 1).

The title compound, Na(HO₃PCH₂PO₃H₂), unlike the layered–pillared compound Na(HO₃PCH₂CH₂PO₃H₂) (Rao, 2005), has a three-dimensional structure (Fig. 2). The two crystallographically distinct Na⁺ ions occupy inversion centres and are octahedrally coordinated by O atoms of the diphosphonate moieties (Table 1). Atom Na1 is bonded, through atoms O1, O2 and O4, to two diphosphonate moieties in a bidentate fashion and to another two diphosphonate moieties in a monodentate fashion. Atom Na2 is bonded, through atoms O3, O5 and O6, to six diphosphonate moieties in a monodentate fashion (Fig. 2). The diphosphonate species is thus bonded to one Na1 and three Na2 atoms in a mono-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 29 June 2005 Accepted 10 August 2005 Online 17 August 2005

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

dentate mode and to one Na1 atom in a bidentate fashion. The values for the bond lengths and angles in (I) compare well with those reported in the literature (Serre & Ferey, 2001).

It is evident from the data in Table 2 that there are hydrogen-bonding interactions between diphosphonate moieties. The O1-H1 and O6-H6 groups of one diphosphonate moiety form hydrogen bonds with those O atoms formally double-bonded to P atoms, namely O3 and O4. Furthermore, O2-H2 is strongly hydrogen-bonded to atom O5.

Experimental

Compound (I) was synthesized, on a scale of 0.5–1.0 g, by evaporating aqueous solutions of stoichiometric mixtures of methylenediphosphonic acid (Lancaster Synthesis) and Na₂CO₃ (SD Fine Chemicals, India). Slow evaporation at room temperature led to the formation of (I) as colourless block-shaped crystals. However, evaporation over a steam bath vielded the same product in the polycrystalline form. The yield was almost quantitative. Elemental analysis, found: C 6.11, H 2.62%; CH₅NaO₆P₂ requires: C 6.07, H 2.55%. The observed X-ray powder pattern agrees with that simulated on the basis of a single-crystal X-ray structure using LAZY-PULVERIX (Yvon et al., 1977), indicating the single-phase nature of the sample. IR data were measured using a Bruker IFS 66V FT-IR spectrometer between 400–4000 cm⁻¹. The C-H stretching vibrations of the methylenediphosphonate group are observed around 2970 and 2920 cm⁻¹ (Minimol et al., 2003), whereas their bending vibrations are seen at 1380 cm^{-1} . The peaks in the region 1200–1000 cm⁻¹ are due to P–O streching vibrations and the O– P–O bending vibrations are found in the region 540–410 cm^{-1} (Rao et al., 2004).

Crystal data

 $[Na(CH_5O_6P_2)]$ $M_r = 197.98$ Monoclinic, $P2_1/n$ a = 8.1041 (14) Å b = 8.139 (3) Å c = 9.7289 (8) Å $\beta = 99.860 \ (10)^{\circ}$ V = 632.2 (2) Å³ Z = 4

 $D_r = 2.080 \text{ Mg m}^{-3}$ Mo Ka radiation Cell parameters from 25 reflections $\theta = 10 - 15^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.30 \times 0.20 \times 0.20$ mm

Figure 2

(Top) The coordination environments of atoms Na1 and Na2. (Bottom) A polyhedral representation of the unit cell of (I).

Data collection C . . .

Enraf-Nonius CAD-4
diffractometer
$\omega/2\theta$ scans
Absorption correction: ψ scan
North et al. (1968)
$T_{\min} = 0.716, \ T_{\max} = 0.865$
1180 measured reflections
1112 independent reflections
1088 reflections with $I > 2\sigma(I)$

CID (

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.078$ S = 1.241112 reflections 105 parameters H atoms treated by a mixture of independent and constrained refinement

 $R_{\rm int} = 0.017$ $\theta_{\rm max} = 25.0^\circ$ $h = -9 \rightarrow 9$ $k = 0 \rightarrow 9$ $l = -11 \rightarrow 0$ 2 standard reflections frequency: 60 min intensity decay: none

 $w = 1/[\sigma^2(F_0^2) + (0.0387P)^2]$ + 0.6147P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.210 (9)

Table	1
-------	---

Selected bond lengths (Å).

Na1-O4 ⁱ	2.3338 (16)	P1-O1	1.5570 (16)
Na1-O2 ⁱ	2.3843 (16)	P1-O2	1.5360 (16)
Na1-O1	2.7112 (17)	P1-O3	1.5047 (16)
Na2-O3	2.3197 (15)	P2-O4	1.5046 (17)
Na2–O5 ⁱ	2.3488 (17)	P2-O5	1.5273 (17)
Na2-O6 ⁱⁱ	2.5162 (16)	P2-O6	1.5640 (16)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y, -z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1 \cdots O3^{iii} \\ O2 - H2 \cdots O5^{iv} \\ O6 - H6 \cdots O4^{v} \end{array}$	0.82	1.73	2.552 (2)	177
	0.82	1.67	2.487 (2)	172
	0.82	1.71	2.526 (2)	175

Symmetry codes: (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $-x - \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

All H atoms were located in difference maps. The P–OH H atoms were repositioned in idealized locations (O–H = 0.82 Å) and refined as riding. The methylene H atoms were freely refined.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* in *WinGX* (Farrugia, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg,

1999) and ORTEP3 (WinGX; Farrugia, 1999); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge the financial support (Project No. 98/37/29/BRNS) received from the Board of Research in Nuclear Sciences, Government of India. We thank the Department of Chemistry, IIT Bombay, Mumbai, for the single-crystal X-ray data.

References

Adair, B. A., Delgado, G. D., Delgado, J. M. & Cheetham, A. K. (2000). Solid State Sci. 2, 119–126.

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Clearfield, A. (1998). *Prog. Inorg. Chem.* **47**, 371–510.

- Clearfield, A. & Wang, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 2937–2947. Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Minimol, M. P., Rao, K. P., Sai, Y. R. & Vidyasagar, K. (2003). Proc. Indian Acad. Sci. (Chem. Sci.), 115, 419–429.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Rao, K. P. (2005) PhD Thesis. Indian Institute of Technology Madras, India. Rao, K. P., Vidyavathy, B., Minimol, M. P. & Vidyasagar, K. (2004). *Inorg.*

- Chem. 43, 4610–4614.
- Serpaggi, F. & Ferey, G. (1998). J. Mater. Chem. 8, 2749-2755.
- Serre, C. & Ferey, G. (2001). Inorg. Chem. 40, 5350-5353.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yvon, K., Jeitsch, W. & Parthe, E. (1977). J. Appl. Cryst. 10, 73-74.
- Zapf, P. J., Rose, D. J., Haushalter, R. C. & Zubieta, J. (1996). J. Solid State Chem. 125, 182–185.